Uncertainty Reduction of Unlabeled Features in Landslide Inventory Using Machine Learning t-SNE Clustering and Data Mining Apriori Association Rule Algorithms

نویسندگان

چکیده

A landslide inventory, after an intense rainfall event in 1998, Southwestern Korea, was collected by digitizing aerial photographs. This left high uncertainty the inventoried features to be verified ground truths. To reduce uncertainty, photographs were reexamined, supported time slider Google Earth. We observed 77 deformed slopes, which similar shape and texture, landslides. then sought label formations based on their spatial relationship with surrounding conditions. three-phase methodology developed. First, inventory of landslide, no vulnerable unlabeled analyzed cluster patterns, dimension reduced using t-distributed stochastic neighbor embedding (t-SNE). Second, Apriori algorithm, association rule mining, used identify common relations antecedent factors (derived from topographic landcover maps) that are linked areas features. Third, findings validated Landsat TM (Thematic mapper) ETM+(Enhanced thematic images acquired before original inventory. Current research offers practical economical solutions (reduced reliance paid remote sensing sensors field survey) labeling classification missing or outdated attributed information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Frequent Pattern and Association Rule Mining from Inventory Database Using Apriori Algorithm

Recently, data mining has attracted a great deal of attention in the information industry and in a Society where data continue to grow on a daily basis. The availability of huge amounts of data and the imminent need for turning such data into useful information and knowledge is the major focus of data mining. The information and knowledge obtained from large data can be used for applications ra...

متن کامل

Clustering and Ranking University Majors using Data Mining and AHP algorithms: The case of Iran

Abstract: Although all university majors are prominent and the necessity of their presences is of no question, they might not have the same priority basis considering different resources and strategies that could be spotted for a country. This paper focuses on clustering and ranking university majors in Iran. To do so, a model is presented to clarify the procedure. Eight different criteria are ...

متن کامل

Association Rule Mining with Apriori and Fpgrowth Using Weka

Association rule mining is considered as a Major technique in data mining applications. It reveals all interesting relationships, called associations, in a potentially large database. However, how interesting a rule is depends on the problem a user wants to solve. Existing approaches employ different parameters to guide the search for interesting rules. Class association rules which combine ass...

متن کامل

Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features

Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11020556